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kbstract--A short outline of the instability phenomenon is given. Two methods are explained for the 
problem solution, i.e. the practical determination of the existence or not of an aperiodic instability and, in 
the case of existence, what to do to eliminate it. The first method substantially comes from that used by 
boiler designers. A second, new method is suggested: this is a manual, simple method. The two methods are 
compared: the new one is reliable, and has the great advantage of the simplicity and the possibility of 
specifying the diaphragm at the pipe mouth for eliminating the two-phase flow instability. 

I N T R O D U C T I O N  

In two-phase flows, for particular conditions, periodic or aperiodic instabilities may occur (Tong 
1965). Ledinegg established the criterion 

a(AP)OG < 0, [11 

to establish the necessary analytic condition for the existence of aperiodic instabilities. For 
periodic oscillations, the criterion is not valid (Quandt 1961, Pulling & Collier 1963). Multipipe 
boilers with parallel waterpipes may have varying delivery capacities in their pipes, even though 
the pressure loss across the inlet and outlet manifolds is constant. 

These effects are clearly undesirable because they affect the overall performance of the 
boiler. Tube failure may occur if the flow in any of the tubes is so low as to lead to dryout and 
consequent tube damage, or to turbine damage if the flow is so high as to give excessive 
carryover. 

A similar phenomenon can happen in the steam generators of nuclear plants, although in this 
case it is extremely unlikely that there could be heavy tube damages as the heating fluid 
temperature is not high enough to damage the pipes of the exchanger. In this case also, the 
performance changes of the generator give rise to undesired results on plant regulation and 
thermal efficiency. 

This instability phenomenon can also occur in reactor cores. Here, flow rate reductions in 
the channels can result in fuel element damage (Lorenzini 1976). 

To understand the aperiodic instability phenomenon several theoretical and experimental 
researches have been carried out (Anderson & Lottes 1%2, Bergles et al. 1967, Bour6 et al. 
1971, Ginoux 1978, Ishii & Zuber 1970, Tong 1968, Veziroglu & Lee 1971), particularly on single 
pipes which carry a two-phase mixture. In practice, however, one has generally to consider 
systems with several parallel pipes, where the thermo-hydraulic phenomenon is evidently more 
complex. 

In this paper a simplified physical treatment of the phenomenon is given that aims to predict 
the occurrence of the instability; further, a simple method is suggested for the hand calculation 
of the regions of aperiodic instability. 

Comparisons are made between this method and the more complete method. These show 
that the simplified method is sufficiently reliable for designed calculations. 
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FORMULATION OF THE PROBLEM 
Assume a cylindric pipe of length t t and internal constant diameter, D, to which heat is 

supplied a uniformly from outside. Suppose that in the (water) one-dimensional stream there 
are only three separate regions: in the first there is a subcooled boiling, in the second a bulk 
boiling, and in the third there are superheating conditions. It is well known that a rigorous 
analysis may allow the identification of other regions: this is a first approximation. 

Assuming L1, L2 and L3 as lengths of the three regions (where obviously Lt + L2 + L3 = L,), 
and Ql, Q2 and Q3 as heat quantities per unit time supplied by the surroundings to each of them. 
Assuming that the heat quantity which is given to each length unit QL is constant, the result is: 

QLL, = GA(hu - hi). [2] 

The assumption that QL is constant is not restrictive, as the same calculations can be developed 
with QL as function of the length, i.e. for a nuclear reactor the trend of QL would be roughly 
cosinusoidal. 

The assumption of QL as a constant is physically true enough for many types of boilers and 
heat exchangers, where the heat is mostly given by very hot fumes, flames, etc. Considering the 
pipe horizontal, the expressions for the pressure losses can be now drawn. In the first region the 
flow is one-phase, so that neglecting the pressure losses due to acceleration, we have only the 
losses due to friction, i.e. 

APj = ~ G 2. [3] 

In the second region where there is boiling, the increase of the specific volume is no longer 
negligible. 

For an exact evaluation of the losses in the pressure due to friction, it would be suitable to 
consider the slip model with the Martinelli-Nelson friction multiplier, drawing it from the 
existing graphs, where 6~N is plotted as a function of the quality of the outlet flow and of the 

pressure. 
Nevertheless, to reach the result we preferred to make an approximation that can also be 

gross, but that enables a treatment facility and a real calculation possibility that is valid in most 
cases, i.e. we suppose that the pressure losses due to friction are caused by the addition of the 
losses due to the liquid and of the losses due to the steam calculated separately. Practically, we 
are using an arbitrary superimposition principle that, up to 20 yr ago, was used for boiler 
calculations; We obtain: 

= flAA -3 f2AA G3 
AP2¢ pt6DQL u + ~  [4] 

that represents the pressure drops due to friction in the second region. 
As far as the pressure losses due to acceleration are concerned (E1-Wakii 1971), we have: 

AP2. = G2(v " -  v') [51 

with v' and v" as the specific volume of the saturated fluid and of the saturated dry steam. 
The losses due to friction in the third region are: 

= [zLt G z _ [ z A ( h " -  hi) G 3 
AP3I p22D p ~ Q [  [61 
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where for 19 2 we choose the value l/v", although it would be preferable to introduce 

1 2 
P~ v2' (v.+v")" [7] 

The pressure drops due to acceleration in the third region are: 

AP3a = G2(vu - v") [8] 

where vu is specific volume of the superheated steam at the outlet, and is not known, since hu is 
unknown. To determine this quantity we assume that the law for the perfect gases is valid for 
the superheated steam: Pv~ = RT,. The assumption that the perfect gas law is valid for the 
whole third region is a remarkable one. 

From this we obtain: 

RQLL, R(h"- hi) R 
= 4- ff  T,, [91 v~ pCvzGA pcvz 

and therefore [8] becomes: 

_RQLLt R ( h " - h i )  v,,)G2" 
AP3a - PACp2 G + (R T~ PCp2 [10] 

To sum up, with some simplifications, the total pressure drop can be expressed with a parabolic 
equation of the third degree, such as: 

AP(G)= KlG + K 2 G 2 +  K3G 3, [ll] 

with 

K1 R QLL,_ QLLt K -  1 
: ff ACp2 AP K ' [lla] 

i~ f2 L, R / h"- hi'~ , 
cp2 / -v ,  [llb] 

K3_fl  A +f2 A - p~ 6DQL [3(h'- h3 + A] p2 ~ [A - 3(h"- h,)]. [llc] 

The static instability can be studied using [11] on the basis of Ledinegg's criterion[l]. 
In order that the equation [I 1] is really utilizable, it is necessary to make some assumptions, 

bearing in mind that the equations have been obtained by making the hypothesis of the 
existence of three regions in the pipe. It is clear that as the flow rate increases, under the same 
transmitted heat quantity, the fraction of pipe containing is superheated steam decreases, 
because the specific energy transmitted to the fluid decreases. 

The point where the third region disappears can also be reached. We indicate with G, the 
value of the flow rate when that happens. The formula we have found is significant only up to 
G~; after that we have to find another formula for the same pipe, where there are only two 
regions, one subcooled and one with bulk boiling. For this equation a limit also exists which is 
reached when G is such that \ the transmitted heat is barely sufficient to bring the liquid to the 
state of saturation. 
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This situation happens for a boundary value of the flow rate that we indicate with Ge (for 
G = Ge we have Lz = 0). 

For G > Ge there will be only subcooled water in the pipe and consequently there will be 
only one region. 

For clarity, we indicate with APA, APe, AP c, the equations that express the pressure losses 
in the case of a pipe divided into three regions, into two regions and into one region 
respectively. 

APA, case with pipe divided into three regions, corresponds to Ap of the expression[11]. 
With similar reasoning to the ones developed for APA, for Gs ~< G ~< Ge we get AP e and so 

on for APo 
As known, using the explained method, within the limits of the introduced hypotheses, we 

can describe the instability phenomenon joining three different equations relevant to as many 
value-intervals for the specific flow rate: the curve that we get is the one in figure 1 and it has 
the well-known shape, also proposed by Ledinegg, to determine the instability criterion. 

SOLUTIONS TO AVOID THE INSTABILITY 

From Ledinegg's criterion[l] we understand immediately that to prevent aperiodic in- 
stability, it is necessary to act such that in the characteristic curve "flow rate vs. drop in 
pressure" of the two-phase flow, there will be no part with negative slope, i.e. it is necessary to 
use a "means" (stabilizing effect), the introduction of which from a theoretical point of view, 
gives rise to the deformation of the curve of figure 1, in order not to have any part with a 
negative slope. Practically this can be obtained by putting an orifice in the pipe inlets, i.e. 
mechanical diaphragms with suitable dimensions, shape and materials, such as to give the 
stabilizing effect and not to be corroded by the fluid. 

Theoretically this means to introduce a concentrated pressure loss that modifies the curve of 
figure 1 in the desired way. This also results in an energy loss and therefore it is important to 
optimize this orifice. 

FORMULATION OF A NEW SIMPLIFIED METHOD FOR THE PROBLEM TREATMENT AND 
SOLUTION 

There are formulae, two of which are well known, i.e. Rankine's for solids compressively 
loaded, and Le Duc's for ballistics, that describe a physical law knowing only what it imposes in 
boundary conditions and having more or less correct notions on what it requests in intermediate 
situations. 

If it is sufficient for the law to have only an approximate description, it is easy to find 
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mathematical expressions that satisfy the boundary conditions and that are possible in the 

intermediate cases. 
Obviously a control of these expressions is also necessary to know what they really 

represent. Through this criterion we will try to achieve a formulation able to solve in an easy 

way the discussed problem. 
Unfortunately in this case we have great difficulties, because the function we are looking 

for, representing the instability phenomenon, must have within itself a maximum and a 
minimum value. These values need to be located in the most exact way, as there is no theory 
giving the exact coordinates of these points. Consequently we shall have to take into con- 
sideration some ordinary points, and this undoubtedly reduces the precision of the proposed 

method. 
It is clear that, the closer the coordinates, chosen at random, are to the region of possible 

instability, the better the curve, obtained by following the reasoning done by Le Duc, will be 
able to represent the phenomenon. Luckily, in this case, the used method offers a simple 
self-control possibility, hence we have a verification of the results. It is known that in a 

two-phase flow there must be: 

limAP = lim K'lG z [12] 
G--*O G--~O 

lira Ap = lim K;G 2. [13] 

The equation we are going to use for a quick solution of the problem must match at the origin 

and at the infinite, the quadratic curves of [12] and [13]. This is achieved if we assume: 

Ap = KIG 21 + (G]Gt)m(K'JK;) -m 
1 + (a/Gt)r"(K'l/K9 +I/2 

[141 

where it is necessary to determine the parameters m and G t and where we have: 

Lt V2s K;= + f z ~ 7 + v . - v  [151 

Cc . L, vL [16] 
K ~ = 2-~pt + h -D 2" 

Note that K'I is the valid coefficient for small flow rates (G~0) ,  that vaporize as soon as they 
enter the pipes, and is given by the sum of the concentrated loss of pressure at the inlet (the 
determination of which is very important because the system can thus be stabilized) plus the 
pressure loss due to friction on the superheated steam, plus the pressure loss due to the change 
of momentum; in the same way K~ is the valid coefficient for very high flow rates (G ~ ~), that 
do not vaporize and is given by the sum of the concentrated pressure loss at the inlet, plus the 

loss due to friction of the liquid along the pipe. 
For G i we see immediately that it is a particular value of G for which the proportionality 

coefficient K' between Ap and G 2 is: 

K'= ~(K~K~). [17] 

It is necessary to give an exact value to G i and m. The system, the stability of which has to be 
guaranteed, must be wholly known excluding the inlet loss coefficient Cc that is determined by 
using the suggested method, in order to guarantee the stability of the system itself. 
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We calculate then Ap~ and Aph for G = GA and G = GB respectively, using for instance, 
the foregoing method or some other less simplified method. Introducing these values in [14] we 
have: 

[18] 

log (K'l - Kb) + log (K), - K~) - log (Kb - K~) - log (KI - K),) 
m = log GB - log G a [19] 

with 

Ap~ 
K;, = Oa ~ 

APb K;- N .  
[20] 

From [19] we can deduce that m is the function of all the properties of the fluid and of the 
circuit characteristics (i.e. of K',, K~, K~, Kb) but not of the concentrated losses at the inlet, as 
they have a constant additional weight in K'~, K~, K~, K~ for which Cc disappears from (19): 
the very useful practical result is that whatever value we give to C~ we need not recalculate m. 

The stability (or better the neutral equilibrium) is hardly ensured when the [14] has neither 
maximum nor minimum values, excluding obviously the ones for the extreme values of G, but 
there is a point of flex, and for this it is necessary that 

•/[KI'• m + 2  
!~K-~}-m-~2 with m > 2 .  [21] 

This is the wanted relation, that, with m known from [19], enables solution of the value of 
K',/K~ at the "stability boundary". Then we have: 

•/{KI'• > m + 2 
~K-~,] ~ m - 2 [22] 

where, when the sign > is valid, there is the possibility of unstable motion, and when the sign 
< is valid there is stable motion. 

The expression[14] represents a curve that at the origin, at the infinite and in two points 
chosen at random is correct and has a "structure" apt to represent the phenomenon taken in 
examination: we must verify if that is always true or not. As mentioned before, the method 
used to determine expression [14] and consequently this diagram flow rate-pressure drop for a 
two-phase flow offers also a very easy control possibility, calculating the pressure loss for a 
flow rate different from the two foregoing ones, which have been already used. Assume: 

AP(Gc) = AP'c, [23] 

we have now the possibility of determining three values of m with [19]. 
If the three values of m are approximately equal to each other, the problem is solved, 

otherwise we can determine an optimal value with the method of the minimum squares. 
Moreover a precision index of the approximate method is given by the possible changes of 

the values, calculated with the different values of m, of the concentrated pressure loss at the 
beginning of the pipe, introduced to eliminate the possible instability of the two-phase flow. 
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Making a ratio between [15] and [16] and drawing Cc we have: 

Cc = 2pl [2(Lt/D)(n2J2) + v,, - vl - (Ki/K~)(f~(Ltvl /2D) 
(KI/K~)- 1 

[24] 

Using suitable tables, we can go back to the ratio between the orifice area and the pipe section. 

A P P L I C A T I O N  

Reference is made to a sodium-water heat exchanger used to produce steam in case of fast 
nuclear reactors (see figure 2). The water flows through the area section, corresponding to the 
sum of the areas of the three circular sectors, located by the intersection of the triangle 
(representing the elementary cell) with the three circumferences that represent in plan the 
sections of pipes; the corresponding sodium flows through the area section equal to that of the 
triangle, less the above mentioned circular sectors. 

For the calculations we use the following values: D = 10mm; Dex = 16mm; 1= 16ram; 
SA = area of the section relevant to the sodium flow = 343 mm2; operating pressure, water 
side = 180atm; sodium inlet and outlet temperature TuN = 550°C and TmN = 350°C, respec- 
tively; the two pinches with the same value AT0 = 15°C. 

From a thermal balance, referred to the water boiling and superheating pipe part and to the 
respective sodium pipe part we have: 

WA = 0.195. 
WN 

The value of this ratio expresses the water mass flow rate that is necessary to let a Kg of 
sodium make the required temperature change. From the thermal balance relevant to the 
economizer part we have: T~---289°C. From the thermal balance for the superheating part we 
have T " =  492.5°C. Drawing now the different heat transfer coefficients using the formulae 
given by Friedland (1971) we have: 

he = 31.6 kJ s -1 m-2°C -1 (sodium side) 

and the corresponding thermal resistance is 

Re = 1~he = 0.0316 s m2°C/kJ; 

the wall thermal resistance is: 

Rp = 0.177 kJ -l m 2 s°C;  

hs = transfer heat coefficient due to the dirt: 

h, = 12.54 kJ m -2 s-~°C -I 

Figure 2. 
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and the thermal resistance: 

R =008kJ~‘m2s”C; s . 

the heat transfer coefficient at the water side are three, one for each flow region of the pipe: 

h,, = 12.93 kJ ss’ rn~*Y~‘, 

h20 = htonv •t hzbo = 10.95 t 5,43 = 16.38 kJ SK’ m-20C-‘, 

h,, = 8 96 kJ SK’ m-20C-‘, . 

and respectively we have the thermal resistances: 

R,, = 0.077, 

R?, = 0.112, 

Rjc = 0.061, 

all in kJJ’ s m*‘C. The global coefficient of thermal exchange can be calculated for the three 

regions, and they are: 

UrOtr = 2.73, UtO,z = 2.86, U10,3 = 2.5 all in kW/m2”C. 

Now the total length of pipe and the partial lengths of the three regions into which the pipe is 
divided can be determined; always by means of a thermal balance we have: 

L, = 3.1 m, Lz = 9.69 m, L3 = 5.29 m, from which L, = 18.08 m. 

These values have been found supposing a flow rate WA = 0.0613 kg/s. In the proposed method 
one must choose at least another flow rate and a further one for a control, i.e. W, and WC. 
Assume W, = ~‘3. WA = 0.0106 kg/s. 

According to the new situation, one has to calculate the following unknown quantities: T’, 

T”, T,, TmN, L,, L2, Lj, indicate with LIB, L2B, LxB, particularly we have: 

LIB =3.304m, LzB = 11.634m, L3B =3.142m, 

hence LtB = 18.08. Assuming 

W, = (l/v/3) WA = 0.0354 kg/s, 

consequently we have: 

L,, = 2.176 m; Lzc = 6.487 m; L3c = 9.5 m and L,, = 18.16 m. 

Calculating now the pressure losses AP,& APL, APl, (caused by the three flow rates WA, W,, 
WC) we obtain: 

K:, = !!G = 1.32 10-Z s2 m2 kg-l, 

GA2 

Kf, = 3 = 0.749 lo-’ s2m2 kg-‘, 
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K,  _ A P b _  c -  Gc 2 - 1.87 10 -2 s 2 m 2 kg -I, 

Ki = 2.40 -2 s 2 m 2 kg-lt 

K~ = 2.16 l0 -3 s 2 m 2 kg-lt. 

643 

Making the calculations, from [19] we have: 

mAB = 2.075; mac = 2.06; mAC = 2.05. 

From these results one can consider that a sufficiently correct value of m is 2.06, hence in [22] 

we have immediately: 

' m + 2  
~/(K-~) m-2"  

According to the criterion which has been stated with the proposed method, one can assert that 
the motion is always stable, i.e. in the curve representing the phenomenon there is no part with 
negative slope (and no point of flex either). In figure 3 there is the diagram of AP = AP(G), 
which confirms the above. 

Note that the two parabolas thinly drawn represent the trend of (12) and (13), that have the 
aforesaid significance (a verification of that can be drawn from figure 3). 

In figure 3 the curve AP = AP(G) marked with a dashed line, is calculated for the same 
values taken in consideration in this example, but using the first method of the note, with all its 

simplifications. 
It .is visible that the concordance is excellent: the values of AP, with G lower than about 

2000, are slightly higher than the other ones (a few per cent, maximum about 6 per cent only for 
a limited range of values around G ~-800). 

As this difference is really minimal we can state that the second proposed method is 
certainly acceptable. 

A further comparison has been made with the experimental data given by Ferrari (1978) thus 
obtaining another confirmation that with the chosen values for the considered quantities, there 
is no instability in the two-phase flow. 

CONCLUSIONS 

In the first method proposed, similar to one used in the past, a series of simplifications are 
used that enables the phenomenon of static instability to be treated in an elementary way, thus 
obtaining a third degree parabola, an equation that is only partially adequate (e.g. for G ~ O and 
G-->~ it does not satisfy the desired requirements). Moreover it is necessary to make three 
equations, depending on the value of G, and to join them. 

The second method proposed is a manual one, but, at least in the most common and easiest 
cases, is able to easily give the required results, including the complete trend of the phenomenon. 
Moreover there is the possibility of controlling the reliability of the obtained data. We conclude 
by pointing out the importance of knowing whether and when this type of aperiodic instability 
of the two-phase flow happens (which instability reveals itself through a flow rate change) in 
order to eliminate it and to avoid all the consequences explained in the preface to this note. 

*Note that in Ki and K6 the term of concentrated pressure losses caused by a possible stabilizing diaphragm, at the 
beginning of the pipe, is not included. 
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